Six papers at the 2018 IEEE Ultrasonics Symposium

Douwe presenting his work at IUS2018

At the 2018 IEEE Ultrasonics Symposium (IUS) - the world’s premier conference on ultrasound research held in Kobe, Japan, in October - the Ultrasound ASICs group presented six papers covering various aspects of our work on integrated circuits for smart ultrasound applications.

Douwe van Willigen presented two papers at IUS. The first, entitled “ASIC design for a single-cable 64-element ultrasound probe”, was nominated for the Best Student Paper Competition (top 3.5% of the student paper submissions). In this paper, we present an ASIC (Application-Specific Integrated Circuit) that interfaces 64 piezoelectric elements directly integrated on top of the ASIC to an imaging system using a single micro-coaxial cable. This innovative design allows a single-element transducer to be replaced by a transducer array, while using the same cable, making it a promising solution for 3D imaging with size-constrained probes. This work is part of our work on intra-vascular ultrasound , a collaboration with the Acoustical Wavefield Imaging Lab (Faculty of Applied Sciences, Delft University of Technology) and the Thoraxcenter, Erasmus MC, Rotterdam.

A second paper authored by Douwe, “Minimizing the zero-flow error in transit time ultrasonic flow meters”, presents results of our FLOW+ project, analysing the effect of driver- and readout electronics on the zero-flow error in transit-time ultrasonic flow meters.

Another paper that links to the same FLOW+ research project, entitled “Feasibility of ultrasound flow measurements via non-linear wave propagation,” was presented by Jack Massaad. This paper demonstrates the feasibility of using non-linear wave propagation to improve the precision of flow measurements using ultrasound.

Zhao Chen presented a paper entitled “A Power-Efficient Transmit Beamformer ASIC for 3-D Catheter-Based/ Endoscopic Probes”, which presents an innovative approach to reduce the power consumption of integrated high-voltage pulsers in miniature ultrasound probes.

Zhao also presented a paper entitled “A quantitative study on the impact of bit errors on image quality in ultrasound probes with in-probe digitization”, in which we investigate an import question associated with the next-generation of digital ultrasound probes: if you digitize the echo signals in the probe, what are then the bit-error requirements on the digital datalink used to send the echo signals to an imaging system? We’ve found that very high bit-error rates can be tolerated without significant impact on image quality, opening the door to the use of simple and power-efficient datalink solutions.

Finally, Mehdi Soozande presented a paper entitled “Virtually Extended Array imaging improves lateral resolution in high frame rate volumetric imaging,” in which we describe a high-frame-rate transmission scheme which outperforms alternative methods in lateral resolution, targeting catheter-based 3D imaging applications.

More ...